A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management

Author:

Kadam Rahul1,Jo Sangyeol1,Lee Jonghwa1,Khanthong Kamonwan1,Jang Heewon1,Park Jungyu1ORCID

Affiliation:

1. Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

As the worldwide demand for meat per person is continuously increasing, there is a corresponding rise in the number of livestock animals, leading to an increase in livestock manure. Selecting appropriate treatment technologies for livestock manures is still a complex task and considerable debates over this issue persist. To develop a more comprehensive understanding of the manure treatment framework, this review was undertaken to assess the most utilized manure management technologies and underscore their respective challenges. Anaerobic digestion has become a commercial reality for treating livestock manures. However, the mono-digestion of single substrates comes with certain drawbacks associated with manure characteristics. Anaerobic co-digestion, involving the utilization of multiple feedstocks, holds the potential to overcome these limitations. Extensive research and development have underscored numerous intrinsic benefits of co-digestion. These include improved digestibility resulting from the synergistic effects of co-substrates and enhanced process stability. This review underscores the limitations associated with the mono-digestion of livestock manures and critically evaluates the advantages of their co-digestion with carbon-rich substrates. Additionally, this review delves into key livestock manure management practices globally, emphasizing the significance of co-digesting livestock manures while addressing the progress and challenges in this field.

Funder

Chosun University

Korea Water Cluster

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference149 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3