A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage

Author:

Li Bryan1ORCID,Buisson Louise2,Clark Ruby-Jean1,Ushak Svetlana3,Farid Mohammed1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1010, New Zealand

2. EPF School of Engineering, 94230 Cachan, France

3. Center for Advanced Study of Lithium and Industrial Minerals (CELiMIN) and Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Campus Coloso, Avenida Universidad de Antofagasta, Antofagasta 02800, Chile

Abstract

Thermochemical energy storage using salt hydrates is a promising method for the efficient use of energy. In this study, three host matrices, expanded vermiculite, expanded clay, and expanded natural graphite were impregnated with a eutectic mixture of CaCl2·6H2O and bischofite (MgCl2·6H2O). These composites were subjected to various humidity conditions (30–70% relative humidity) at 20 °C over an extended hydration period to investigate their cyclability. It was shown that only expanded natural graphite could contain the deliquescent salt at high humidity over 50 cycles. Hence, the expanded natural graphite composites containing either CaCl2·6H2O or CaCl2·6H2O/bischofite eutectic mixture were placed in a lab-scale open packed bed reactor, providing energy densities of 150 and 120 kWh/m3 over 20 h, respectively. The eutectic composite showed slightly lower temperature lift, water uptake rate, and power output but at reduced cost. Using the eutectic mixture also decreased the composite’s dehydration temperature at which the maximum mass loss rate occurred around 16.2 °C to 62.3 °C, allowing recharge using less energy-intensive heating methods. The cost of storing 1 kWh of energy with expanded natural graphite composites is only USD 0.08 due to its stability. This research leveraging cost-effective composites with enhanced stability, reaction kinetics, and high thermal energy storage capabilities benefits renewable energy, power generation, and the building construction research communities and industries by providing a competitive alternative to sensible heat storage technologies.

Funder

SERC-Chile ANID/FONDAP

ANID/PUENTE

ANID/FONDECYT REGULAR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3