Abstract
The degrees of adaptive responses of different halophytes to saline–alkali soil vary substantially. Kalidium (Amaranthaceae), a genus comprised of six species of succulent euhalophytes with significantly differing distributions in China, provides ideal material for exploring the ecophysiological relationships involved in these variations. Thus, in a large-scale field survey in 2014–2018, samples of soil (at 20 cm depth intervals spanning 0 to 100 cm) and seeds were collected from areas where these six species are naturally distributed. Chemical properties of soils in the areas and germinability of the species’ seeds in media with 0–500 mM NaCl and 0–250 mM Na2SO4 were then analyzed to test effects of salinity-related factors on the species’ distributions. The pH of the soil samples mainly ranged between 8.5 and 10.5 and positively correlated with their mean total salt contents. Germination rates of all six species’ seeds were negatively correlated with concentrations of NaCl and Na2SO4 in the media, and their recovery germination rates in distilled water were high (>74%). The results show that the species’ distributions and chemical properties of their saline soils are strongly correlated, notably the dominant cation at all sites is Na+, but the dominant anions at K. cuspidatum and K. caspicum sites are Cl− and SO42−, respectively. Species-associated variations in concentrations of Ca2+ were also detected. Thus, our results provide clear indications of major pedological determinants of the species’ geographic ranges and strong genotype-environment interactions among Kalidium species.
Funder
The Central Government Guides Local Scientific and Technological Development Programs of Gansu Province
National Key Research and development program of China
The National Natural Science Foundation of China
Science and Technology Project of Forestry and Grassland Bureau of Gansu Province
Reference38 articles.
1. Mechanisms of salinity tolerance;Munns;Annu. Rev. Plant Biol.,2008
2. The integration of activity in saline environments: Problems and perspectives;Cheeseman;Unct. Plant Biol.,2013
3. New insights on plant salt tolerance mechanisms and their potential use for breeding;Hanin;Front. Plant Sci.,2016
4. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants;Horie;Rice,2012
5. FAO (2021, November 09). FAO Soils Portal. Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献