A Robust Power Allocation Algorithm for Cognitive Radio Networks Based on Hybrid PSO

Author:

Zhao Lu,Zhou Mingyue

Abstract

The use of a cognitive radio power allocation algorithm is an effective method to improve spectral utilization. However, there are three problems with traditional cognitive radio power allocation algorithms: (1) based on the ideal channel model analysis, channel fluctuation is not considered; (2) they do not consider fairness among cognitive users; and (3) some algorithms are complex and locating the optimal power allocation scheme is not an easy task. For the above problems, this study establishes a robust model which adds the cognitive user transmission rate variance constraint to solve the maximum channel capacity time power allocation scheme by considering the worst-case channel transmission model, and finally solves this complex non-convex optimization problem by using the hybrid particle swarm algorithm. Simulation results show that the algorithm has good robustness, improves the fairness among the cognitive users, makes full use of the channel resources under the constraints, and has a simple algorithm, fast convergence, and good optimization results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Efficiency Based Multi Service Heterogeneous Access Network Selection Algorithm;IEICE Transactions on Communications;2023-10-01

2. Research on Automatic Path Planning Method of Warehouse Inspection Robot;Applied Artificial Intelligence;2023-08-30

3. Power allocation algorithm based on channel capacity in cooperative communication;Second International Conference on Electronic Information Technology (EIT 2023);2023-08-15

4. Interference Mitigation Using Particle Swarm Optimization Algorithm in Television White Space;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

5. Short-Term Prediction of 80–88 km Wind Speed in Near Space Based on VMD–PSO–LSTM;Atmosphere;2023-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3