Relationship between Species Richness, Biomass and Structure of Vegetation and Mycobiota along an Altitudinal Transect in the Polar Urals

Author:

Shiryaev Anton G.ORCID,Peintner UrsulaORCID,Elsakov Vladimir V.ORCID,Sokovnina Svetlana Yu.ORCID,Kosolapov Denis A.,Shiryaeva Olga S.,Devi Nadezhda M.ORCID,Grigoriev Andrei A.

Abstract

Aboveground species richness patterns of vascular plants, aphyllophoroid macrofungi, bryophytes and lichens were compared along an altitudinal gradient (80–310 m a.s.l.) on the Slantsevaya mountain at the eastern macroslope of the Polar Urals (Russia). Five altitudinal levels were included in the study: (1) Northern boreal forest with larch-spruce in the Sob’ river valley habitats; (2–3) two levels of closed, northern boreal, larch-dominated forests on the slopes; (4) crook-stemmed forest; (5) tundra habitats above the timberline. Vascular plant or bryophyte species richness was not affected by altitudinal levels, but lichen species richness significantly increased from the river valley to the tundra. For aphyllophoroid macrofungi, species richness was highest at intermediate and low altitudes, and poorest in the tundra. These results indicate a positive ecotone effect on aphyllophoroid fungal species richness. The species richness of aphyllophoroid fungi as a whole was neither correlated to mortmass stocks, nor to species richness of vascular plants, but individual ecological or morphological groups depended on these parameters. Poroid fungal species richness was positively correlated to tree age, wood biomass and crown density, and therefore peaked in the middle of the slope and at the foot of the mountain. In contrast, clavarioid fungal species richness was negatively related to woody bio- and mortmass, and therefore peaked in the tundra. This altitudinal level was characterized by high biomass proportions of lichens and mosses, and by high litter mortmass. The proportion of corticoid fungi increased with altitude, reaching its maximum at the timberline. Results from the different methods used in this work were concordant, and showed significant patterns. Tundra communities differ significantly from the forest communities, as is also confirmed by nonmetric multidimensional scaling (NMDS) analyses based on the spectrum of morphological and ecological groups of aphyllophoroid fungi.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference56 articles.

1. Climate Change 2014: Impacts, Adaptation, and Vulnerability https://www.ipcc.ch/working-group/wg2/

2. Dynamics of Woody and Shrubby Vegetation in the Mountains of the Polar Urals under the Influence of Modern Climate Changes;Shiyatov,2009

3. Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia

4. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

5. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3