A Machine Learning Predictive Model to Detect Water Quality and Pollution

Author:

Xu XiaotingORCID,Lai TinORCID,Jahan Sayka,Farid FarnazORCID,Bello Abubakar

Abstract

The increasing prevalence of marine pollution during the past few decades motivated recent research to help ease the situation. Typical water quality assessment requires continuous monitoring of water and sediments at remote locations with labour-intensive laboratory tests to determine the degree of pollution. We propose an automated water quality assessment framework where we formalise a predictive model using machine learning to infer the water quality and level of pollution using collected water and sediments samples. Firstly, due to the sparsity of sample collection locations, the amount of sediment samples of water is limited, and the dataset is incomplete. Therefore, after an extensive investigation on various data imputation methods’ performance in water and sediment datasets with different missing data rates, we chose the best imputation method to process the missing data. Afterwards, the water sediment sample will be tagged as one of four levels of pollution based on some guidelines and then the machine learning model will use a specific technique named classification to find the relationship between the data and the final result. After that, the result of prediction can be compared to the real result so that it can be checked whether the model is good and whether the prediction is accurate. Finally, the research gave improvement advice based on the result obtained from the model building part. Empirically, we show that our best model archives an accuracy of 75% after accounting for 57% of missing data. Experimentally, we show that our model would assist in automatically assessing water quality screening based on possibly incomplete real-world data.

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3