Quantum Chaos and Quantum Randomness—Paradigms of Entropy Production on the Smallest Scales

Author:

Dittrich ThomasORCID

Abstract

Quantum chaos is presented as a paradigm of information processing by dynamical systems at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable rectification, removing inconsistencies related to entropy in classical chaos: bottom-up information currents require an inexhaustible entropy production and a diverging information density in phase-space, reminiscent of Gibbs’ paradox in statistical mechanics. It is shown how a mere discretization of the state space of classical models already entails phenomena similar to hallmarks of quantum chaos and how the unitary time evolution in a closed system directly implies the “quantum death” of classical chaos. As complementary evidence, I discuss quantum chaos under continuous measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in a similar guise? Where observed quantum systems generate randomness, could it result from an exchange of entropy with the macroscopic meter? This possibility is explored, presenting a model for spin measurement in a unitary setting and some preliminary analytical results based on it.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference96 articles.

1. Deterministic Nonperiodic Flow

2. Strange Attractors, Chaotic Behavior, and Information Flow

3. Stochastic behavior of a quantum pendulum under a periodic perturbation;Casati,1992

4. Hamiltonian Systems: Chaos and Quantization;Ozorio de Almeida,1988

5. Semiclassical Physics;Brack,1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3