Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process

Author:

Maj GrzegorzORCID,Szyszlak-Bargłowicz JoannaORCID,Zając GrzegorzORCID,Słowik Tomasz,Krzaczek PawełORCID,Piekarski Wiesław

Abstract

This paper presents the results of the evaluation of the energy potential of waste from the process of drying corn grain in the form of corn cobs, damaged grains, corn grain husks, and mixtures of starting materials. A technical and elementary analysis was performed for the biomass under investigation. The elemental composition of ash and the tendencies for slagging and boiler slagging were determined, and the emission factors were estimated based on the elemental analysis performed. The tests showed the highest calorific value among the starting materials for corn cobs (CCs) (14.94 MJ·kg−1) and for the mixture of corn cobs with corn husk (CC–CH) (13.70 MJ·kg−1). The estimated emission factors were within ranges of 38.26–63.26 kg·Mg−1 for CO, 936–1549 kg·Mg−1 for CO2, 0.85–4.32 kg·Mg−1 for NOx, 0.91–1.03 kg·Mg−1 for SO2, and 3.88–54.31 kg·Mg−1 for dust. The research showed that the creation of mixtures from starting materials leads to materials with lower potential for negative environmental impact as well as a reduced risk of slagging and fouling of biomass boilers. However, taking into account all the parameters determined for the biomass under study, the highest energy potential was characteristic for corn cobs and the mixture of corn cobs with corn husk.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. The prospects of burning coal and oil processing waste in slurry, gel, and solid state

2. Willow Biomass Energy Generation Efficiency and Greenhouse Gas Reduction Potential

3. Racjonalne gospodarowanie odpadami jako przedsięwzięcie na rzecz bezpieczeństwa ekonomicznego kraju;Wąsowicz;J. Mod. Sci.,2015

4. Rational utilization of production residues generated in agri-food;Czyżyk;Arch. Waste Manag. Environ. Prot.,2015

5. An overview of the recent trends on the waste valorization techniques for food wastes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3