Abstract
In this paper, an extensive study on the energy losses of a magnetic refrigerator prototype developed at University of Salerno, named ‘8MAG’, is carried out with the aim to improve the performance of such a system. The design details of ‘8MAG’ evidences both mechanical and thermal losses, which are mainly attributed to the eddy currents generation into the support of the regenerators (magnetocaloric wheel) and the parasitic heat load of the rotary valve. The latter component is fundamental since it imparts the direction of the heat transfer fluid distribution through the regenerators and it serves as a drive shaft for the magnetic assembly. The energy losses concerning eddy currents and parasitic heat load are evaluated by two uncoupled models, which are validated by experimental data obtained with different operating conditions. Then, the achievable coefficient of performance (COP) improvements of ‘8MAG’ are estimated, showing that reducing eddy currents generation (by changing the material of the magnetocaloric wheel) and the parasitic heat load (enhancing the insulation of the rotary valve) can lead to increase the COP from 2.5 to 2.8 (+12.0%) and 3.0 (+20%), respectively, and to 3.3 (+32%), combining both improvements, with an hot source temperature of 22 °C and 2 K of temperature span.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献