Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass

Author:

Alam Md TanvirORCID,Lee Jang-Soo,Lee Sang-Yeop,Bhatta Dhruba,Yoshikawa Kunio,Seo Yong-ChilORCID

Abstract

Thirteen types of fuel pellets were prepared from hydrothermally treated hospital solid waste, hydrothermally treated rice straw, pyrolytic plastic waste residue, rice straw, and Sakhalin fir residue using a flat die pellet machine. Different pellet properties such as pellet density, pellet durability, aspect ratio, physicochemical characteristics, and gross calorific value (GCV) were evaluated as well as compared concerning the European standard specification for residential/commercial densified fuels. In addition, the quality of pellets was compared with coal. The results showed that the pellets made only with hydrothermally treated hospital solid waste, hydrothermally treated rice straw, pyrolytic plastic waste residue, and rice straw failed to meet few individual criteria (<3 wt% ash content, <10 wt% moisture content, <0.03 wt% chlorine content, >96.5 wt% pellet durability, and >600 kg/m3 pellet density) of the European standard specifications. However, most of the mixed fuel pellets satisfied the requirement of pellet properties according to the European standard specification. In particular, up to 16.70 wt% hydrothermally treated rice straw, 1.50 wt% hydrothermally treated hospital solid waste, and 4.76 wt% of pyrolytic plastic waste residue can be blended with Shakhalin fir residue to produce low-chlorine fuel pellets. The gross calorific value of pellets made from the mixture of hydrothermally treated wastes and pyrolytic plastic waste residue (around 22 MJ/kg) showed similar results to that of coal. In the case of mixed pellets, the presence of these hydrothermally treated wastes and pyrolytic plastic waste residue valorized the fuel pellet quality. The main outcome of this study was the production of low chlorine biomass fuel pellets of high gross calorific values blended with hydrothermally treated wastes and pyrolytic waste residues, which opens a new door for utilizing waste in a better way, especially hospital solid waste.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3