Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions

Author:

Kloppenburg SannekeORCID,Smale RobinORCID,Verkade NickORCID

Abstract

The transition to a low-carbon energy system goes along with changing roles for citizens in energy production and consumption. In this paper we focus on how residential energy storage technologies can enable householders to contribute to the energy transition. Drawing on literature that understands energy systems as sociotechnical configurations and the theory of ‘material participation’, we examine how the introduction of home batteries affords new roles and energy practices for householders. We present qualitative findings from interviews with householders and other key stakeholders engaged in using or implementing battery storage at household and community level. Our results point to five emerging storage modes in which householders can play a role: individual energy autonomy; local energy community; smart grid integration; virtual energy community; and electricity market integration. We argue that for householders, these storage modes facilitate new energy practices such as providing grid services, trading, self-consumption, and sharing of energy. Several of the storage modes enable the formation of prosumer collectives and change relationships with other actors in the energy system. We conclude by discussing how householders also face new dependencies on information technologies and intermediary actors to organize the multi-directional energy flows which battery systems unleash. With energy storage projects currently being provider-driven, we argue that more space should be given to experimentation with (mixed modes of) energy storage that both empower householders and communities in the pursuit of their own sustainability aspirations and serve the needs of emerging renewable energy-based energy systems.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3