The Stability of Tailings Dams under Dry-Wet Cycles: A Case Study in Luonan, China

Author:

Wang Xingang,Zhan Hongbin,Wang Jiading,Li Ping

Abstract

Instability of tailings dams may result in loss of life and property and serious environmental pollution. The position of the tailings dam’s phreatic line varies due to continuously changing factors such as rainfall infiltration and discharge of tailings recycling water. Consequently, tailings dams undergo dry-wet (DW) cycles, accompanied by the appearance of a hydro-fluctuation belt. With dynamic development of the physical and chemical properties of tailings sand in the hydro-fluctuation belt, the stability of tailings dams is uncertain. In this study, direct shear tests were performed on the tailings sand collected from a tailings dam in Luonan, through which the shear strength parameters of tailings sand with DW cycles were obtained. Then, a method that efficiently calculates the phreatic line of the tailings dam under DW cycles was proposed. In addition, based on laboratory tests and the proposed phreatic line calculation method, we used a finite element program to evaluate the stability of the tailings dam that experienced different DW cycles. The calculated results showed that: (i) the damage effects of DW cycles gradually weakens as the number of DW cycles increases. (ii) With the increasing of DW cycles, the maximum displacement of the tailings dam increases from 0.5 mm to 22 mm, and the area of maximum displacement expanded mainly at the toe of the tailings dam and at the front edge of the hydro-fluctuation belt. (iii) The tailings dam safety factor decreases continuously with increasing DW cycles. This study may provide a novel method for analyzing the stability of tailings dams under different DW cycles as well as an important reference for improving tailings dam stability.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3