An Approach to the Automatic Construction of a Road Accident Scheme Using UAV and Deep Learning Methods

Author:

Saveliev Anton,Lebedeva Valeriia,Lebedev Igor,Uzdiaev Mikhail

Abstract

Recreating a road traffic accident scheme is a task of current importance. There are several main problems when drawing up a plan of accident: a long-term collection of all information about an accident, inaccuracies, and errors during manual data fixation. All these disadvantages affect further decision-making during a detailed analysis of an accident. The purpose of this work is to automate the entire process of operational reconstruction of an accident site to ensure high accuracy of measuring the distances of the relative location of objects on the sites. First the operator marks the area of a road accident and the UAV scans and collects data on this area. We constructed a three-dimensional scene of an accident. Then, on the three-dimensional scene, objects of interest are segmented using a deep learning model SWideRNet with Axial Attention. Based on the marked-up data and image Transformation method, a two-dimensional road accident scheme is constructed. The scheme contains the relative location of segmented objects between which the distance is calculated. We used the Intersection over Union (IoU) metric to assess the accuracy of the segmentation of the reconstructed objects. We used the Mean Absolute Error to evaluate the accuracy of automatic distance measurement. The obtained distance error values are small (0.142 ± 0.023 m), with relatively high results for the reconstructed objects’ segmentation (IoU = 0.771 in average). Therefore, it makes it possible to judge the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3