Understanding Free Volume Characteristics of Ethylene-Propylene-Diene Monomer (EPDM) through Molecular Dynamics Simulations

Author:

Wang Yajian,Yang Yuyou,Tao Mingjiang

Abstract

Understanding the underlying processes associated with the viscoelasticity performance of ethylene-propylene-diene monomer (EPDM) during its service life is essential for assessing and predicting its waterproofing performance in underground infrastructure. The viscoelasticity of the polymer is closely related to its free volume, and both of these properties depend on multiple factors, such as temperature, stress magnitude, and strain level. To explore the fundamental viscoelastic behavior of EPDM using free volume as a proxy for viscoelasticity, this article investigates the influence of temperature, stress magnitude, and strain level, as well as their combined effect, on the free volume through molecular dynamics (MD) simulations. An EPDM cross-linked molecular model was built and verified by comparing the simulation values of glass transition temperature, mechanical properties, and gas diffusivity with the experimental results reported in the literature. Then, the dependence of EPDM’s fractional free volume on temperature, strain, and their combined effect was investigated via MD simulations, on the basis of which the applicability of various superposition principles was also evaluated.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3