Abstract
Emotion recognition has attracted major attention in numerous fields because of its relevant applications in the contemporary world: marketing, psychology, surveillance, and entertainment are some examples. It is possible to recognize an emotion through several ways; however, this paper focuses on facial expressions, presenting a systematic review on the matter. In addition, 112 papers published in ACM, IEEE, BASE and Springer between January 2006 and April 2019 regarding this topic were extensively reviewed. Their most used methods and algorithms will be firstly introduced and summarized for a better understanding, such as face detection, smoothing, Principal Component Analysis (PCA), Local Binary Patterns (LBP), Optical Flow (OF), Gabor filters, among others. This review identified a clear difficulty in translating the high facial expression recognition (FER) accuracy in controlled environments to uncontrolled and pose-variant environments. The future efforts in the FER field should be put into multimodal systems that are robust enough to face the adversities of real world scenarios. A thorough analysis on the research done on FER in Computer Vision based on the selected papers is presented. This review aims to not only become a reference for future research on emotion recognition, but also to provide an overview of the work done in this topic for potential readers.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference181 articles.
1. Pattern Recognition and Machine Learning;Bishop,2006
2. Deep learning
3. Frontal EEG asymmetry as a moderator and mediator of emotion
4. A survey on face detection in the wild: Past, present and future
5. The effectiveness of data augmentation in image classification using deep learning;Perez;arXiv,2017
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献