Independent Random Recurrent Neural Networks for Infrared Spatial Point Targets Classification

Author:

Wu ,Lu ,Hu ,Zhao

Abstract

Exo-atmospheric infrared (IR) point target discrimination is an important research topic of space surveillance systems. It is difficult to describe the characteristic information of the shape and micro-motion states of the targets and to discriminate different targets effectively by the characteristic information. This paper has constructed the infrared signature model of spatial point targets and obtained the infrared radiation intensity sequences dataset of different types of targets. This paper aims to design an algorithm for the classification problem of infrared radiation intensity sequences of spatial point targets. Recurrent neural networks (RNNs) are widely used in time series classification tasks, but face several problems such as gradient vanishing and explosion, etc. In view of shortcomings of RNNs, this paper proposes an independent random recurrent neural network (IRRNN) model, which combines independent structure RNNs with randomly weighted RNNs. Without increasing the training complexity of network learning, our model solves the problem of gradient vanishing and explosion, improves the ability to process long sequences, and enhances the comprehensive classification performance of the algorithm effectively. Experiments show that the IRRNN algorithm performs well in classification tasks and is robust to noise.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Neural network for exo-atmospheric target discrimination;Resch;Proc. SPIE Int. Soc. Opt. Eng.,1998

2. Micro-doppler effect in radar: phenomenon, model, and simulation study

3. Micro-motion dynamics analysis of ballistic targets based on infrared detection;Liu;J. Syst. Eng. Electron.,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3