Use of Neural Networks to Identify Safety Prevention Priorities in Agro-Manufacturing Operations within Commercial Grain Elevators

Author:

Davoudi Kakhki FatemehORCID,Freeman Steven A.,Mosher Gretchen A.

Abstract

The grain handling industry plays a significant role in U.S. agriculture by storing, distributing, and processing a variety of agricultural commodities. Commercial grain elevators are hazardous agro-manufacturing work environments where workers are prone to severe injuries, due to the nature of the activities and workplace. Safety incidents in agro-manufacturing operations generally arise from a combination of factors, rather than a single cause, therefore, research on occupational incidents must look deeper into identifying the underlying causes, through the application of advanced analyses methods. In occupational safety, it is possible to estimate and predict probability of safety risks through developing artificial neural network predictive models. Due to the significance of safety risk assessment in the design and prioritization of effective prevention measures, this study aimed at classifying and predicting causes of occupational incidents in grain elevator agro-manufacturing operations in the Midwest region of the United States. Workers’ compensation claims data, from 2008 to 2016, were utilized for training multilayer perceptron (MLP) and radial basis function (RBF) neural networks. Both MLP and RBF models could predict the probability of safety risks with a high overall accuracy of 60%, 61%. Based on values of AUC (area under the curve) from the ROC (receiving operating charts), both models predicted the probability of individual safety risks with a high accuracy rate of between 71.5% and 99.2%. In addition, sensitivity analysis showed that nature of injury is the most significant determinant of safety risks probability, along with type of injury. The novelty of this study is the use of the artificial neural network methodology to analyze multi-level causes of occupational incidents as the sources of safety risks in bulk storage facilities. The results confirm that artificial neural networks are useful in safety risk estimation, and identifying the incidents’ risk factors. The implementation of safety measures in grain elevators can help in preventing occupational injuries, saving lives, and reducing the occurrence and severity of such incidents in industrial work environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3