Deep Neural Network Equalization for Optical Short Reach Communication

Author:

Schaedler Maximilian,Bluemm ChristianORCID,Kuschnerov Maxim,Pittalà FabioORCID,Calabrò Stefano,Pachnicke StephanORCID

Abstract

Nonlinear distortion has always been a challenge for optical communication due to the nonlinear transfer characteristics of the fiber itself. The next frontier for optical communication is a second type of nonlinearities, which results from optical and electrical components. They become the dominant nonlinearity for shorter reaches. The highest data rates cannot be achieved without effective compensation. A classical countermeasure is receiver-side equalization of nonlinear impairments and memory effects using Volterra series. However, such Volterra equalizers are architecturally complex and their parametrization can be numerical unstable. This contribution proposes an alternative nonlinear equalizer architecture based on machine learning. Its performance is evaluated experimentally on coherent 88 Gbaud dual polarization 16QAM 600 Gb/s back-to-back measurements. The proposed equalizers outperform Volterra and memory polynomial Volterra equalizers up to 6th orders at a target bit-error rate (BER) of 10 − 2 by 0.5 dB and 0.8 dB in optical signal-to-noise ratio (OSNR), respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3