Meaningful Learning Through Virtual Reality Learning Environments: A Case Study in Materials Engineering

Author:

Vergara DiegoORCID,Extremera Jamil,Rubio Manuel Pablo,Dávila Lílian P.ORCID

Abstract

The increasing dissemination of virtual reality learning environments (VRLEs) compels the elucidation of how these didactic tools can improve their effectiveness at the formative level. The motivation generated in students by a VRLE is revealed as a key factor in achieving meaningful learning, but such a motivation by itself alone does not guarantee the long-term retention of knowledge. To identify the necessary characteristics of a VRLE to achieve an appropriate level of meaningful learning, this paper compares a set of VRLEs created in previous years with a group of recently developed VRLEs, after being used by engineering students. A description of the design process of the both VRLEs groups is included in this paper. Most significantly, analysis of the response of a total of 103 students in a specific survey reveals how a step-by-step protocol system helped improve students' knowledge and retention after one year of using a VRLE. Thus, this study not only demonstrates the importance of using modern development engines when creating or updating a VRLE to achieve student motivation, but also justifies in many cases the use of a step-by-step protocol as a method to improve the long-term retention of knowledge.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. On the Design of Virtual Reality Learning Environments in Engineering

2. Virtual Environments in Materials Science and Engineering

3. Materials World Magazinehttps://www.iom3.org/materials-world-magazine/news/2017/mar/31/virtual-benefits-materials-science

4. Enhancing the teaching/learning of materials mechanical characterization by using virtual reality;Vergara;J. Mater. Educ.,2016

5. Virtual tensile test machine as an example of material science virtual laboratory post;Dobrzański;J. Achiev. Mater. Manuf. Eng.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3