Improving Hybrid CTC/Attention Architecture with Time-Restricted Self-Attention CTC for End-to-End Speech Recognition

Author:

Wu LongORCID,Li Ta,Wang Li,Yan Yonghong

Abstract

As demonstrated in hybrid connectionist temporal classification (CTC)/Attention architecture, joint training with a CTC objective is very effective to solve the misalignment problem existing in the attention-based end-to-end automatic speech recognition (ASR) framework. However, the CTC output relies only on the current input, which leads to the hard alignment issue. To address this problem, this paper proposes the time-restricted attention CTC/Attention architecture, which integrates an attention mechanism with the CTC branch. “Time-restricted” means that the attention mechanism is conducted on a limited window of frames to the left and right. In this study, we first explore time-restricted location-aware attention CTC/Attention, establishing the proper time-restricted attention window size. Inspired by the success of self-attention in machine translation, we further introduce the time-restricted self-attention CTC/Attention that can better model the long-range dependencies among the frames. Experiments with wall street journal (WSJ), augmented multiparty interaction (AMI), and switchboard (SWBD) tasks demonstrate the effectiveness of the proposed time-restricted self-attention CTC/Attention. Finally, to explore the robustness of this method to noise and reverberation, we join a train neural beamformer frontend with the time-restricted attention CTC/Attention ASR backend in the CHIME-4 dataset. The reduction of word error rate (WER) and the increase of perceptual evaluation of speech quality (PESQ) approve the effectiveness of this framework.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The FawAI ASR System for the ISCSLP 2022 Intelligent Cockpit Speech Recognition Challenge;2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP);2022-12-11

2. 3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech recognition;2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP);2022-12-11

3. Improving Hybrid CTC/Attention Architecture for Agglutinative Language Speech Recognition;Sensors;2022-09-27

4. Hybrid end-to-end model for Kazakh speech recognition;International Journal of Speech Technology;2022-08-02

5. Cursive Text Recognition in Natural Scene Images Using Deep Convolutional Recurrent Neural Network;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3