Optimization of Processing Parameters to Increase Thermal Conductivity of Rice Straw Fiber Film

Author:

Ming XianglanORCID,Chen Haitao,Wang Donghai

Abstract

Biodegradable mulching film (BMF) is a promising alternative to petroleum-based plastic mulching film. Thermal conductivity is an important quality factor of BMF that affects the heat transfer between ambient to soil and plant growth. The objective of this research was to enhance the thermal conductivity of fiber film through an environmentally friendly agent and optimized processing conditions. Response surface methodology (RSM) was used to optimize the processing conditions. With optimized process conditions of 70 g/m2 basis weight, 1.5% wet strength agent content, 0.5% neutral sizing agent content, 15% charcoal addition ratio, and 55 °SR beating degree, the films showed satisfactory thermal conductivity (0.0714 W/m·K) and high dry and wet tensile strengths (33.4 and 12.2 N). The addition of charcoal increased the thermal conductivity of the film by 34.31%. This promising result shows the biodegradable fiber film is able to increase soil temperature and meet the required temperature for crop growth.

Funder

Science and Technology Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Polyethylene and biodegradable mulches for agricultural applications: a review

2. Progress and prospect of the research of environmental friendly bast fiber mulch film;Wang;Plant Fiber Sci. China,2007

3. Review on natural fiber reinforcement polymer composites;Bongarde;IJESIT,2014

4. Plastics and Health Risks

5. The development status of agricultural plastics mulching film and progress on degradable mulching films;Lu;Plant Fiber Sci. China,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3