The Effects of Augmented Reality Interaction Techniques on Egocentric Distance Estimation Accuracy

Author:

Lin Chiuhsiang JoeORCID,Caesaron Dino,Woldegiorgis Bereket Haile

Abstract

Recent developments in virtual environment applications allow users to interact with three-dimensional (3D) objects in virtual environments. As interaction with 3D objects in virtual environments becomes more established, it is important to investigate user performance with such interaction techniques within a specific task. This study investigated two interaction modes, direct and indirect, depending on how the users interacted with the 3D objects, by measuring the accuracy of egocentric distance estimation in a stereoscopic environment. Fourteen participants were recruited to perform an acquisition task with both direct pointing and indirect cursor techniques at three egocentric distances and three task difficulty levels. The accuracy of the egocentric distance estimation, throughput, and task completion time were analyzed for each interaction technique. The indirect cursor technique was found to be more accurate than the direct pointing one. On the other hand, a higher throughput was observed with the direct pointing technique than with the indirect cursor technique. However, there were no significant differences in task completion time between the two interaction techniques. The results also showed accuracy to be higher at the greatest distance (150 cm from the participant) than at the closer distances of 90 cm and 120 cm. Furthermore, the difficulty of the task also significantly affected the accuracy, with accuracy lower in the highest difficulty condition than in the medium and low difficulty conditions. The findings of this study contribute to the understanding of user-interaction techniques in a stereoscopic environment. Furthermore, developers of virtual environments may refer to these findings in designing effective user interactions, especially those in which performance relies on accuracy.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3