Microenvironment Responsive Modulations in the Fatty Acid Content, Cell Surface Hydrophobicity, and Adhesion of Candida albicans Cells

Author:

Shiradhone Asha Bhujangrao,Ingle Sujata S.ORCID,Zore Gajanan B.ORCID

Abstract

Considering the significance in survival and virulence, we have made an attempt to understand modulations in the membrane and cell wall properties of Candida albicans hyphae induced by temperature (37 °C) and neutral pH and yeast form cells grown under low hydrostatic pressure (LHP). Our results suggest that cell surface hydrophobicity (CSH) and adhesion are dynamic properties determined largely by the microenvironment rather than morphological forms, citing the significance of variation in niche specific virulence. GC-MS analysis showed that 49 and 41 fatty acids modulated under hyphal form induced by temperature alone (37 °C) and neutral pH, respectively while that of 58 under yeast form cells under low hydrostatic pressure (LHP) (1800 Pa). Fatty acid and ergosterol data indicates that fluidity increases with increase in temperature (37 °C) and neutral pH i.e., saturated fatty acids and ergosterol decreases. Similarly, CSH and adhesion decrease in response to temperature (37 °C), pH 7, and LHP compared to controls, irrespective of morphological forms. In general, membranes were more rigid, and cell walls were more hydrophobic and adhesive in yeast form compared to hyphal form cells, except in case of yeast form cells grown under LHP. Yeast form cells grown under LHP are less hydrophobic and adhesive.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3