On the Elimination of Infections Related to Oncogenic Human Papillomavirus: An Approach Using a Computational Network Model

Author:

Muñoz-Quiles CintiaORCID,Díez-Domingo JavierORCID,Acedo LuisORCID,Sánchez-Alonso Víctor,Villanueva Rafael J.

Abstract

Cervical cancer is the fourth most common malignancy in women worldwide, although it is preventable with prophylactic HPV vaccination. HPV transmission-dynamic models can predict the potential for the global elimination of cervical cancer. The random network model is a new approach that allows individuals to be followed, and to implement a given vaccination policy according to their clinical records. We developed an HPV transmission-dynamic model on a lifetime sexual partners network based on individual contacts, also accounting for the sexual behavior of men who have sex with men (MSM). We analyzed the decline in the prevalence of HPV infection in a scenario of 75% and 90% coverage for both sexes. An important herd immunity effect for men and women was observed in the heterosexual network, even with 75% coverage. However, HPV infections are persistent in the MSM population, with sustained circulation of the virus among unvaccinated individuals. Coverage around 75% of both sexes would be necessary to eliminate HPV-related conditions in women within five decades. Nevertheless, the variation in the decline in infection in the long term between a vaccination coverage of 75% and 90% is relatively small, suggesting that reaching coverage of around 70–75% in the heterosexual network may be enough to confer high protection. Nevertheless, HPV elimination may be achieved if men’s coverage is strictly controlled. This accurate representation of HPV transmission demonstrates the need to maintain high HPV vaccination coverage, especially in men, for whom the cost-effectiveness of vaccination is questioned.

Funder

Ministerio de Economía, Industria y Competitividad

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3