A Metallic Fracture Estimation Method Using Digital Image Correlation

Author:

Wu ZiranORCID,Han Yan,Liang Bumeng,Wu Guichu,Bao Zhizhou,Qian Weifei

Abstract

This paper proposes a metallic fracture estimation method that combines digital image correlation and convolutional neural networks, based on a proven theory that the strain distribution of a component changes when a crack occurs in a structure. By using digital image correlation, the method achieves noncontact and nondestructive sensing, as well as high interference immunity. We utilize a digital image correlation system to produce strain distribution graphs that reflect occurrences and propagations of fractures during fatigue processes. A deep residual network (ResNet) regression model is trained by correlating strain distribution graphs with the corresponding fracture lengths, so that the fracture propagation condition can be estimated by data from digital image correlation. In the experiment, according to the American Society for Testing Materials (ASTM) standards, we fabricate a set of aluminum specimens and perform fatigue tests with data acquisition by digital image correlation. Finally, we obtain a crack length estimation mean absolute error of 0.0077 mm, or 0.26% of the measuring range. The results show the precision, as well as the practicality, of the proposed method.

Funder

the National Natural Science Foundation of China

the Science Technology Department of Zhejiang Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference44 articles.

1. The Research of Acoustic Emission Techniques for Non Destructive Testing and Health Monitoring on Civil Engineering Structures;Ji;Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis (CMD),2008

2. Electromagnetic Stimulation of the Acoustic Emission for Fatigue Crack Detection of the Sheet Metal

3. Complementary Split-Ring Resonator for Crack Detection in Metallic Surfaces

4. Fracture Mechanics;Perez,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3