Performance-Matching Optimization Design of Loader-Hydraulic System Based on Hydrodynamics Analysis

Author:

Wang Haifei,Yang Shimin,Lu Tan

Abstract

The study of the performance of dynamic hydraulic throttling under the condition of stable fluid is of great significance. The effect of a step change in pressure differences on the throttling performance of a hydraulic valve is studied. This paper studies the dynamic and static performance of a hydraulic-valve-outlet throttling-speed regulation system, builds a more accurate mathematical model, considers the linear factors of the flow of hydraulic-valve throttling, analyzes the influence of the step-load change in pressure difference on the stability of the hydraulic-valve movement speed, and constructs a nonlinear mathematical model of the speed-regulation system of the outlet throttling. A pressure sensor is used to measure the change in pressure overshoot, and the effect of a pressure-difference step change on the throttling performance of the hydraulic valve is studied under steady-fluid conditions. The theory is analyzed and verified by experiment, and the parameters of hydraulic components are modified using the dynamic-change rule of the hydraulic valve’s two-chamber pressure.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3