Abstract
For the purpose of the intensification of an industrial-scale gas-liquid process, the implementation in an alternative reactor concept is investigated at Hamburg University of Technology (TUHH) in cooperation with Ehrfeld Mikrotechnik GmbH. Existing process operation data from a bubble column hint at a mass transfer limitation of the gas-liquid reaction. In the project, a jet loop reactor (JLR) is chosen to increase the specific interfacial area between gas and liquid, and thus increase mass transfer, while keeping the reactor system mechanically simple and low-maintenance. For the investigation, a laboratory scale reactor has been designed on the basis of an existing industrial scale process and scaled according to a pilot scale reactor available at TUHH. For scaling, geometric similarity is desired, while specific energy dissipation rate and volumetric gas input are kept constant for the chosen scale-up strategy. Between the two different scales, the reactors are successfully characterised in a water-air system with regards to the important mass transfer, among other parameters. A pressure- and chemical-resistant twin of the laboratory-scale reactor is provided to the project partner for trials under real process conditions with the original material system. The presented work shows that the JLR concept can be transferred sufficiently well between different scales when suitable parameters are chosen, and offers a wide operating window. The investigations aim to provide a basis for a future scale-up of the chemical process in the JLR system to the industrial scale.
Funder
Ehrfeld Mikrotechnik GmbH
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference26 articles.
1. Lohrengel, B. (1990). Untersuchungen zur Fluiddynamik zwei- und dreiphasig betriebener Schlaufenreaktoren. [Ph.D. Thesis, Technische Universität Clausthal].
2. Multiphase Catalysis in Jetloop-Reactors;Chem. Eng. Trans.,2009
3. Bubble-size distributions and interfacial areas in a jetloop reactor for multiphase catalysis;Chem. Eng. Sci.,2009
4. Scale-down des Strahlzonen-Schlaufenreaktors: Entwicklung eines Screening-Tools für transportlimitierte chemische Reaktionen;Chem. Ing. Tech.,2010
5. Reschetilowski, W. (2019). Handbuch Chemische Reaktoren: Grundlagen und Anwendungen der Chemischen Reaktionstechnik, Springer.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献