Quality Prediction Model of KICA-JITL-LWPLS Based on Wavelet Kernel Function

Author:

Sun Liangliang,Huang Yiren,Yang Mingyi

Abstract

To obtain quality variables that cannot be measured in real time during the production process but reflect information on the quality of the final product, the batch production process has the characteristics of a strong time-varying nature, non-Gaussian data distribution and high nonlinearity. A locally weighted partial least squares regression quality prediction model (KICA-JITL-LWPLS), based on wavelet kernel function independent meta-analysis with immediate learning, is proposed. The model first measures the similarity between the normalized input data and the historical data and assigns the input data to the group of historical data with high similarity to it, based on the posterior probability of the Bayesian classifier; subsequently, wavelet kernel functions are selected and kernel learning methods are introduced into the independent meta-analysis algorithm. An independent meta-analysis, based on the wavelet kernel function, is performed on the classified input data to obtain probabilistically significant independent sets of variables. Finally, a real-time learning-based LWPLS regression analysis is performed on this variable set to construct a local prediction model for the current sample by calculating the similarity between the local input data. The local predictions from the PLS output are fused with the posterior probability output from the Bayesian classifier to produce the final prediction. The method was used to predict the product concentration and bacteriophage concentration during penicillin fermentation through a simulation platform. The prediction results were basically consistent with the real values, proving that the proposed KICA-JITL-LWPLS quality prediction model, based on wavelet kernel functions, has reliable prediction results.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3