Innovative Polymer Microspheres with Chloride Groups Synthesis, Characterization and Application for Dye Removal

Author:

Wawrzkiewicz MonikaORCID,Podkościelna BeataORCID

Abstract

This article presents the synthesis and sorption characteristics of novel microspheres based on 4-vinylbenzene chloride (VBCl) with divinylbenzene (DVB) or ethylene glycol dimethylacrylate (EGDMA). To confirm the chemical structure of the homo- and co-polymers attenuated total reflectance, Fourier transform infrared spectroscopy (ATR-FTIR) was used. The presence of characteristic functional groups (−OH, −CH, −CH2, C−O, C=O and C–O–C) in obtained microspheres was confirmed. Differential scanning calorimetry (DSC) analysis confirms the good thermal resistance of the polymers. The decomposition of microspheres is closely related to the chemical structure of the monomers used. DVB-derived materials decompose in one step, whereas the decomposition of EGDMA derivatives is multi-stage. Obtained polymeric microspheres were applied for auramine O (AO) basic dye removal form aqueous solutions. Equilibrium studies confirmed that the Freundlich model described the system better than Langmuir or Temkin equations and the adsorption capacities kF ranged from 4.56 to 7.85 mg1−1/n L1/n/g. The sorption kinetic of AO from solutions of the 10 and 100 mg/L concentrations was very fast, and after 10 min, equilibrium was reached.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3