Trajectory Planning of the Exit Point for a Cable-Driven Parallel Mechanism by Considering the Homogeneity of Tension Variation

Author:

Peng ChengORCID,Yang Fang,Hou Zequn,Li Yanglong,Li Hang

Abstract

Considering the uniformity of cable tension variation, in this paper, the trajectory planning problem of the exit point for a continuously reconfigurable four-cable-driven two-degrees-of-freedom (DOF) parallel mechanism was studied. Furthermore, an improved quadratic programming model-based trajectory planning method is proposed, which greatly reduces the change in cable tension and can be used to solve the problem of excessive cable tension change when the existing mechanism moves on the moving platform. First, the structural characteristics of the parallel mechanism with a fixed exit point were analyzed, and the static model was established. Considering the cable length and tension constraints, the feasible workspace of the mechanism force was solved. Then, based on the dynamic modeling, an improved quadratic programming model was used to solve the cable tension values under the typical trajectory in the force-feasible workspace. Finally, considering the influence of structural parameters on the change in cable tension, the improved quadratic programming model was transformed, and an exit point trajectory planning model was proposed. The uniform change in cable tension was realized by continuously changing the exit point position. The results show that the cable tension can change uniformly in a very small range by planning the trajectory of the exit point, and the stability of the moving platform movement is guaranteed to the greatest extent.

Funder

the National Basic Scientific Research Project of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3