Impact of Electric Vehicles on Energy Efficiency with Energy Boosters in Coordination for Sustainable Energy in Smart Cities

Author:

Kumar PawanORCID,Nikolovski SreteORCID,Ali Ikbal,Thomas Mini S.,Ahuja Hemant

Abstract

The use of electric vehicles (EVs) has recently increased in a smart city environment. With this, the optimal location of the charging station is a great challenge and, hence, the energy efficiency performance (EEP) of an electrical system is important. Ideally, the EEP is realized through passive energy boosters (PEBs) and active energy boosters (AEBs). PEBs require no external resources, and EEP is achieved through altering the network topology and loading patterns, whereas, in AEBs, integrating external energy resources is a must. The EEP has also become dynamic with the integration of an energy storage system (ESS) in a deregulated environment. Customer energy requirement varies daily, weekly, and seasonally. In this scenario, the frequent change in network topology requires modifying the size and location of AEBs. It alters the customers’ voltage profile, loadability margin, and supply reliability when the EV works differently as a load or source. Therefore, a comprehensive EEP analysis with different probabilistic loading patterns, including ESS, must be performed at the planning stage. This work uses a harmony search algorithm to evaluate EEP for AEBs and PEBs, in coordination, when ESS works as a load or source, at four locations, for customers’ and utilities’ benefits.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3