Abstract
Oxidation denitration is one of the most efficient ways to remove NOx from flue gas in a coal-fired power plant. However, this oxidation denitration produces saline solution containing a high concentration of nitrate, which needs to be well treated. In this paper, MFC was firstly used to treat the high nitrate content saline denitration solution from ozone oxidation denitration of a coal-fired power plant. The influences of chemical oxygen demand (COD) and initial nitrate concentration on the nitrate removal and electricity generation of MFC were investigated by sequencing batch mode. The results showed that using MFCs could efficiently remove nitrate from coal-fired power plant saline denitration solution with nitrate nitrogen (NO3−-N) concentration up to 1510 mg/L. The average nitrate nitrogen removal rate was as high as 248.3 mg/(L·h) at initial nitrate nitrogen concentration of 745 mg/L and COD concentration of 6.5 g/L, which was eight times as high as that of the conventional biological method. Furthermore, the MFC required an average COD consumption of 3.42 g/g-NO3−-N which was lower than most of the conventional biological methods. In addition, MFC could produce a maximum power density of 241.1 mW/m2 while treating this saline denitration solution.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献