Partial Information Decomposition: Redundancy as Information Bottleneck

Author:

Kolchinsky Artemy12ORCID

Affiliation:

1. ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain

2. Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan

Abstract

The partial information decomposition (PID) aims to quantify the amount of redundant information that a set of sources provides about a target. Here, we show that this goal can be formulated as a type of information bottleneck (IB) problem, termed the “redundancy bottleneck” (RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from the sources that best predict the target, without revealing which source provided the information. It can be understood as a generalization of “Blackwell redundancy”, which we previously proposed as a principled measure of PID redundancy. The “RB curve” quantifies the prediction–compression tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets of redundant sources to be identified without combinatorial optimization. We provide an efficient iterative algorithm for computing the RB curve.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement

Publisher

MDPI AG

Reference58 articles.

1. Williams, P.L., and Beer, R.D. (2010). Nonnegative decomposition of multivariate information. arXiv.

2. Partial information decomposition as a unified approach to the specification of neural goal functions;Wibral;Brain Cogn.,2017

3. Lizier, J., Bertschinger, N., Jost, J., and Wibral, M. (2018). Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy, 20.

4. Kolchinsky, A. (2022). A Novel Approach to the Partial Information Decomposition. Entropy, 24.

5. Williams, P.L. (2011). Information Dynamics: Its Theory and Application to Embodied Cognitive Systems. [Ph.D. Thesis, Indiana University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3