Heart ID: Human Identification Based on Radar Micro-Doppler Signatures of the Heart Using Deep Learning

Author:

Cao Peibei,Xia Weijie,Li Yi

Abstract

Human identification based on radar signatures of individual heartbeats is crucial in various applications, including user authentication in mobile devices, identification of escaped criminals, etc. Usually, optical systems employed to recognize humans are sensitive to ambient light environments, while radar does not have such a drawback, since it has high penetration and all-weather capability. Meanwhile, since micro-Doppler characteristics from the heart of different people are distinct and not easy to fake, it can be used for identification. In this paper, we employed a deep convolutional neural network (DCNN) and conventional supervised learning methods to realize heartbeat-based identification. First, the heartbeat signals were acquired by a Doppler radar and processed by short-time Fourier transform. Then, predefined features were extracted for the conventional supervised learning algorithms, while time–frequency graphs were directly inputted to the DCNN since the network had its own feature extraction part. It is shown that the DCNN could achieve average accuracy of 98.5% for identifying four people, and higher than 80% when the number of people was less than ten. For conventional supervised learning algorithms when identifying four people, the accuracy of the support vector machine (SVM) was 88.75%, and the accuracy of SVM–Bayes was 91.25%, while naive Bayes had the lowest accuracy of 80.75%.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference24 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3