Characterizing the Variability of the Structure Parameter in the PROSPECT Leaf Optical Properties Model

Author:

Boren Erik J.,Boschetti LuigiORCID,Johnson Dan M.ORCID

Abstract

Radiative transfer model (RTM) inversion allows for the quantitative estimation of vegetation biochemical composition from satellite sensor data, but large uncertainties associated with inversion make accurate estimation difficult. The leaf structure parameter (Ns) is one of the largest sources of uncertainty in inversion of the widely used leaf-level PROSPECT model, since it is the only parameter that cannot be directly measured. In this study, we characterize Ns as a function of phenology by collecting an extensive dataset of leaf measurements from samples of three dicotyledon species (hard red wheat, soft white wheat, and upland rice) and one monocotyledon (soy), grown under controlled conditions over two full growth seasons. A total of 230 samples were collected: measured leaf reflectance and transmittance were used to estimate Ns from each sample. These experimental data were used to investigate whether Ns depends on phenological stages (early/mid/late), and/or irrigation regime (irrigation at 85%, 75%, 60% of the initial saturated tray weight, and pre-/post-irrigation). The results, supported by the extensive experimental data set, indicate a significant difference between Ns estimated on monocotyledon and dicotyledon plants, and a significant difference between Ns estimated at different phenological stages. Different irrigation regimes did not result in significant Ns differences for either monocotyledon or dicotyledon plant types. To our knowledge, this study provides the first systematic record of Ns as a function of phenology for common crop species.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3