FPGA-Based Smart Sensor to Detect Current Transformer Saturation during Inrush Current Measurement

Author:

Martínez-Figueroa G. de J.,Córcoles-López Felipe,Bogarra SantiagoORCID

Abstract

Current transformer saturation affects measurement accuracy and, consequently, protection reliability. One important concern in the case of overcurrent protections is the discrimination between faults and inrush current in power transformers. This paper presents an FPGA-based smart sensor to detect current transformer saturation, especially during inrush current conditions. Several methods have been proposed in the literature, but some are unsuitable for inrush currents due to their particular waveform. The proposed algorithm implemented on the smart sensor uses two time-domain features of the measured secondary current: the second-order difference function and the third-order statistic central moment. The proposed smart sensor presents high effectiveness and immunity against noise with accurate results in different conditions: different residual flux, resistive burdens, sampling frequency, and noise levels. The points at which saturation starts are detected with an accuracy of approximately 100%. Regarding the end of saturation, the proposed method detects the right ending points with a maximum error of a sample. The smart sensor has been tested on experimental online and real-time conditions (including an anti-aliasing filter) with accurate results. Unlike most existing methods, the proposed smart sensor operates efficiently during inrush conditions. The smart sensor presents high-speed processing despite its simplicity and low computational cost.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3