Abstract
Sentiment analysis aims to mine polarity features in the text, which can empower intelligent terminals to recognize opinions and further enhance interaction capabilities with customers. Considerable progress has been made using recurrent neural networks or pre-trained models to learn semantic representations. However, recently published models with complex structures require increasing computational resources to reach state-of-the-art (SOTA) performance. It is still a significant challenge to deploy these models to run on micro-intelligent terminals with limited computing power and memory. This paper proposes a lightweight and efficient framework based on hybrid multi-grained embedding on sentiment analysis (MC-GGRU). The gated recurrent unit model is designed to incorporate a global attention structure that allows contextual representations to be learned from unstructured text using word tokens. In addition, a multi-grained feature layer can further enrich sentence representation features with implicit semantics from characters. Through hybrid multi-grained representation, MC-GGRU achieves high inference performance with a shallow structure. The experimental results of five public datasets show that our method achieves SOTA for sentiment classification with a trade-off between accuracy and speed.
Funder
National Key Technologies R&D Program
Advanced research project of SongShan Laboratory
Nature Science Foundation of China
Key Project of Public Benefit in Henan Province of China
Key Scientific and Technology Project of Henan Province of China
Research Foundation for Advanced Talents of Zhengzhou University
Key Research Projects of Universities in Henan Province of China
Fundamental Science Projects of Railway Police College
Key Scientific and Technological Research Projects in Henan Province of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献