Abstract
The main goal of this research was to evaluate the performances of the ZED-F9P-Ublox low-cost GNSS receiver in a base-rover real configuration. We realized a base configuration with two permanent stations based on the ZED-F9P and two geodetic antennas and the rover configuration based on another ZED-F9P and an ANN-MB-00-00 Multi-band (L1, L2/E5b/B2I) active GNSS u-blox antenna. In the calculation of the reference stations, we compared the solutions with the ZED-F9P receiver and a professional receiver. Comparison showed greater variability in the solutions, but the coordinate values were in very good agreement. Standard deviations were in the order of a few millimeters. On the rover side, two car tests were performed in two different environments, one in an extra-urban environment with a long baseline of approximately 30 km in an open sky area with varying visibility and shielded locations, the other one in an urban area around a circle approximately 10 km in diameter with the presence of buildings and open sectors. The results of the measurements were very good, with more than 95% of fixed solutions in real-time and a time to fix on reacquisition of 1 or 2 s. Moreover, real-time kinematic solutions were in good agreement with the post-processed ones, showing that less than 5% of differences were above 30 mm in the horizontal component and 100 mm in the vertical component.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference29 articles.
1. GPS Satellite Surveying
2. GNSS User Technology Report. Publications Office of the European Union (Luxembourg) Issue 3, 2020https://data.europa.eu/doi/10.2878/565013
3. GPS RTK Performance Characteristics and Analysishttps://www.scirp.org/html/376.html
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献