Regulation of Tight Junctions by Sex Hormones in Goat Mammary Epithelial Cells

Author:

Zhu HongmeiORCID,Jia Qianqian,Zhang Yanyan,Liu Dongming,Yang DiqiORCID,Han Li,Chen Jianguo,Ding YiORCID

Abstract

The sex hormones of estrogen and progesterone (P4) play a vital role in mammary gland development and milk lactation in ruminants. The tight junction (TJ) between adjacent secretory epithelial cells is instrumental in establishing the mammary blood–milk barrier. However, whether estrogen and P4 exert their effect on mammary function via regulating TJ remain unclear. Here, to clarify the role of 17-β estradiol (E2) and P4 in the regulation of TJ in goat mammary gland, we first explored the relationships between the concentrations of E2, P4, and the protein expression of claudin-1, claudin-3, occludin, and ZO-1 during the mammary gland development in goat. Then, we further explored the mRNA and protein expression of claudin-1, claudin-3, occludin, and ZO-1 in the goat mammary epithelial cells (GMECs) in vitro under different concentrations of E2 and P4. The results demonstrated that the protein expression of claudin-1 decreased, but occludin and ZO-1 increased with the decline in E2 and P4 during the transition from pregnancy to lactation. In the in vitro studies, E2 exerted a positive effect on the mRNA expression of claudin-1, and accelerated the proteins’ expression of claudin-1 and ZO-1 in GMECs; P4 upregulated the mRNA expression of claudin-1, claudin-3, occludin, and ZO-1, and also improved the protein expression of claudin-1, claudin-3, and ZO-1 in the GMECs. The results demonstrated that E2 and P4 play an important role in regulating the expression of the mammary TJ components, which may ultimately affect the mammary gland development and milk lactation.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3