Preparation Techniques of TiO2 Nanofluids and Challenges: A Review

Author:

Ali Hafiz,Babar HamzaORCID,Shah Tayyab,Sajid MuhammadORCID,Qasim Muhammad,Javed Samina

Abstract

Titanium dioxide (TiO2) has been used extensively because of its unique thermal and electric properties. Different techniques have been used for the preparation of TiO2 nanofluids which include single-step and two-step methods. In the natural world, TiO2 exists in three different crystalline forms as anatase, brookite, and rutile. Nanoparticles are not used directly in many heat transfer applications, and this provides a major challenge to researchers to advance towards stable nanofluid preparation methods. The primary step involved in the preparation of nanofluid is the production of nano-sized solid particles by using a suitable technique, and then these particles are dispersed into base fluids like oil, water, paraffin oil or ethylene glycol. However, nanofluid can also be prepared directly by using a liquid chemical method or vapor deposition technique (VDT). Nanofluids are mostly used in heat transfer applications and the size and cost of the heat transfer device depend upon the working fluid properties, thus, in the past decade scientists have made great efforts to formulate stable and cost-effective nanofluids with enhanced thermophysical properties. This review focuses on the different synthesis techniques and important physical properties (thermal conductivity and viscosity) that need to be considered very carefully during the preparation of TiO2 nanofluids for desired applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3