Abstract
Three thermal frequencies that were designated as 3, 4, and 5 Hz were used to reveal the microstructural evolution, mechanical, and corrosion properties of AA6061-T6 sheets that were welded by double pulsed gas metal arc welding (DP-GMAW) using microstructural observations, microhardness tests, tensile tests, bend tests, impact tests, and corrosion tests. A self-developed welding system consisted of a digital multifunctional welder and an arc dynamic waveform wavelet analyzer was chosen to perform welding operations and to record electrical signal waveforms during the welding process. The results show that the process of DP-GMAW was stable, and the weld beads exhibited aesthetic ripples. The ripple distance, the grain size, and porosity of the fusion zone decreased with an increasing thermal frequency. Microhardness and corrosion properties of the weld joint improved when the thermal frequency increased. In addition, all of the joints exhibited excellent bending properties. However, the impact property of the weld joint was lower than that of the BM. It indicated that the low impact energy results of the welded AA6061-T6 sheet were mainly due to the formation of micro-cracks in the fusion zone.
Funder
High-level Leading Talent Introduction Program of GDAS
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献