Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator

Author:

Niro Giovanni12ORCID,Marasco Ilaria12ORCID,Rizzi Francesco2ORCID,D’Orazio Antonella1,Grande Marco1ORCID,De Vittorio Massimo23ORCID

Affiliation:

1. Department of Electrical and Information Engineering, Politecnico di Bari, 70125 Bari, Italy

2. Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy

3. Department of Engineering and Innovation, Università del Salento, 73100 Lecce, Italy

Abstract

Sensing systems are becoming less and less invasive. In this context, flexible materials offer new opportunities that are impossible to achieve with bulky and rigid chips. Standard silicon sensors cannot be adapted to curved shapes and are susceptible to big deformations, thus discouraging their use in wearable applications. Another step forward toward minimising the impacts of the sensors can be to avoid the use of cables and connectors by exploiting wireless transmissions at ultra-high frequencies (UHFs). Thin-film bulk acoustic wave resonators (FBARs) represent the most promising choice among all of the piezoelectric microelectromechanical system (MEMS) resonators for the climbing of radio frequencies. Accordingly, the fabrication of FBARs on flexible and wearable substrates represents a strategic step toward obtaining a new generation of highly sensitive wireless sensors. In this work, we propose the design and fabrication of a flexible gravimetric sensor based on an FBAR on a polymeric substrate. The resonator presents one of the highest electromechanical coupling factors in the category of flexible AlN-based FBARs, equal to 6%. Moreover, thanks to the polymeric support layer, the presence of membranes can be avoided, which leads to a faster and cheaper fabrication process and higher robustness of the structure. The mass sensitivity of the device was evaluated, obtaining a promising value of 23.31 ppm/pg. We strongly believe that these results can pave the way to a new class of wearable MEMS sensors that exploit ultra-high-frequency (UHF) transmissions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3