Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion

Author:

Zhou KexueORCID,Zhang MinORCID,Wang Hai,Tan Jinlin

Abstract

Deep learning has attracted increasing attention across a number of disciplines in recent years. In the field of remote sensing, ship detection based on deep learning for synthetic aperture radar (SAR) imagery is replacing traditional methods as a mainstream research method. The multiple scales of ship objects make the detection of ship targets a challenging task in SAR images. This paper proposes a new methodology for better detection of multi-scale ship objects in SAR images, which is based on YOLOv5 with a small model size (YOLOv5s), namely the multi-scale ship detection network (MSSDNet). We construct two modules in MSSDNet: the CSPMRes2 (Cross Stage Partial network with Modified Res2Net) module for improving feature representation capability and the FC-FPN (Feature Pyramid Network with Fusion Coefficients) module for fusing feature maps adaptively. Firstly, the CSPMRes2 module introduces modified Res2Net (MRes2) with a coordinate attention module (CAM) for multi-scale features extraction in scale dimension, then the CSPMRes2 module will be used as a basic module in the depth dimension of the MSSDNet backbone. Thus, our backbone of MSSDNet has the capabilities of features extraction in both depth and scale dimensions. In the FC-FPN module, we set a learnable fusion coefficient for each feature map participating in fusion, which helps the FC-FPN module choose the best features to fuse for multi-scale objects detection tasks. After the feature fusion, we pass the output through the CSPMRes2 module for better feature representation. The performance evaluation for this study is conducted using an RTX2080Ti GPU, and two different datasets: SSDD and SARShip are used. These experiments on SSDD and SARShip datasets confirm that MSSDNet leads to superior multi-scale ship detection compared with the state-of-the-art methods. Moreover, in comparisons of network model size and inference time, our MSSDNet also has huge advantages with related methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3