A GRU and AKF-Based Hybrid Algorithm for Improving INS/GNSS Navigation Accuracy during GNSS Outage

Author:

Tang YananORCID,Jiang JinguangORCID,Liu Jianghua,Yan PeihuiORCID,Tao Yifeng,Liu Jingnan

Abstract

The integrated navigation system consisting of an inertial navigation system (INS) and Global Navigation Satellite System (GNSS) provides continuous high-accuracy positioning whereas the navigation accuracy during a GNSS outage inevitably degrades owing to INS error divergence. To reduce such degradation, a gated recurrent unit (GRU) and adaptive Kalman filter (AKF)-based hybrid algorithm is proposed. The GRU network, which has advantages of high accuracy and efficiency, is constructed to predict the position variations during GNSS outage. Furthermore, this paper takes the GRU-predicted error accumulation into consideration, and introduces AKF as a supplementary methodology to improve the navigation performance. The proposed hybrid algorithm is trained and tested by practical road datasets and compared with four algorithms, including the standard KF, Multi-Layer Perceptron (MLP)-aided KF, Long Short Time Memory (LSTM) aided KF, and GRU-aided KF. Periods of 180 and 120 s GNSS outage are employed to test the performance of the proposed algorithm in different time scales. The comparison result between the standard KF and neural network-aided KF indicates that the neural network is an effective methodology for bridging GNSS outages. The performance comparison between three kinds of neural networks demonstrate that both recurrent neural networks surpass the MLP in prediction position variation, and the GRU transcends the LSTM in prediction accuracy and training efficiency. Furthermore, it is concluded that the adaptive estimation theory is an effective complement to neural network-aided navigation, as the GRU-aided AKF reduced the horizontal error of GRU-aided KF by 31.71% and 16.12% after 180 and 120 s of GNSS outage, respectively.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3