Extension of an Open GEOBIA Framework for Spatially Explicit Forest Stratification with Sentinel-2

Author:

Brauchler MelanieORCID,Stoffels Johannes,Nink Sascha

Abstract

Spatially explicit information about forest cover is fundamental for operational forest management and forest monitoring. Although open-satellite-based earth observation data in a spatially high resolution (i.e., Sentinel-2, ≤10 m) can cover some information needs, spatially very high-resolution imagery (i.e., aerial imagery, ≤2 m) is needed to generate maps at a scale suitable for regional and local applications. In this study, we present the development, implementation, and evaluation of a Geographic Object-Based Image Analysis (GEOBIA) framework to stratify forests (needleleaved, broadleaved, non-forest) in Luxembourg. The framework is exclusively based on open data and free and open-source geospatial software. Although aerial imagery is used to derive image objects with a 0.05 ha minimum size, Sentinel-2 scenes of 2020 are the basis for random forest classifications in different single-date and multi-temporal feature setups. These setups are compared with each other and used to evaluate the framework against classifications based on features derived from aerial imagery. The highest overall accuracies (89.3%) have been achieved with classification on a Sentinel-2-based vegetation index time series (n = 8). Similar accuracies have been achieved with classification based on two (88.9%) or three (89.1%) Sentinel-2 scenes in the greening phase of broadleaved forests. A classification based on color infrared aerial imagery and derived texture measures only achieved an accuracy of 74.5%. The integration of the texture measures into the Sentinel-2-based classification did not improve its accuracy. Our results indicate that high resolution image objects can successfully be stratified based on lower spatial resolution Sentinel-2 single-date and multi-temporal features, and that those setups outperform classifications based on aerial imagery only. The conceptual framework of spatially high-resolution image objects enriched with features from lower resolution imagery facilitates the delivery of frequent and reliable updates due to higher spectral and temporal resolution. The framework additionally holds the potential to derive additional information layers (i.e., forest disturbance) as derivatives of the features attached to the image objects, thus providing up-to-date information on the state of observed forests.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3