Implementing Spatio-Temporal 3D-Convolution Neural Networks and UAV Time Series Imagery to Better Predict Lodging Damage in Sorghum

Author:

Varela SebastianORCID,Pederson Taylor L.,Leakey Andrew D. B.

Abstract

Unmanned aerial vehicle (UAV)-based remote sensing is gaining momentum in a variety of agricultural and environmental applications. Very-high-resolution remote sensing image sets collected repeatedly throughout a crop growing season are becoming increasingly common. Analytical methods able to learn from both spatial and time dimensions of the data may allow for an improved estimation of crop traits, as well as the effects of genetics and the environment on these traits. Multispectral and geometric time series imagery was collected by UAV on 11 dates, along with ground-truth data, in a field trial of 866 genetically diverse biomass sorghum accessions. We compared the performance of Convolution Neural Network (CNN) architectures that used image data from single dates (two spatial dimensions, 2D) versus multiple dates (two spatial dimensions + temporal dimension, 3D) to estimate lodging detection and severity. Lodging was detected with 3D-CNN analysis of time series imagery with 0.88 accuracy, 0.92 Precision, and 0.83 Recall. This outperformed the best 2D-CNN on a single date with 0.85 accuracy, 0.84 Precision, and 0.76 Recall. The variation in lodging severity was estimated by the best 3D-CNN analysis with 9.4% mean absolute error (MAE), 11.9% root mean square error (RMSE), and goodness-of-fit (R2) of 0.76. This was a significant improvement over the best 2D-CNN analysis with 11.84% MAE, 14.91% RMSE, and 0.63 R2. The success of the improved 3D-CNN analysis approach depended on the inclusion of “before and after” data, i.e., images collected on dates before and after the lodging event. The integration of geometric and spectral features with 3D-CNN architecture was also key to the improved assessment of lodging severity, which is an important and difficult-to-assess phenomenon in bioenergy feedstocks such as biomass sorghum. This demonstrates that spatio-temporal CNN architectures based on UAV time series imagery have significant potential to enhance plant phenotyping capabilities in crop breeding and Precision agriculture applications.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3