A Comparative Analysis of Unmanned Aircraft Systems in Low Altitude Photogrammetric Surveys

Author:

Mugnai FrancescoORCID,Tucci GraziaORCID

Abstract

Comparing photogrammetric performances of four user-grade unmanned aircraft systems (UAS) is the main aim of this paper. This study investigates what is the more suitable UAS for specific applications considering the required scale factor, such as for architectural, environmental and restoration purposes. Some photogrammetric surveys were conducted in a 5 ha area using a Phantom 4 Adv, Mavic 2 Pro, Mavic Air 2 and Mavic Mini 2. These unmanned aircrafts are commercial systems used mainly by private professionals. Some photogrammetric reconstructions were carried out by varying flight altitude and camera settings of the 4 UAS. Structure-from-motion (SfM) algorithms were applied to the images taken from the UASs. The surveys’ quality was analyzed by comparing the ground targets’ coordinates measured on the field with indirect georeferencing through global navigation satellite system (GNSS). Fifty targets were installed and arranged following a kind of regular grid. For each photogrammetric flight, the boundary conditions were maintained the same, as well as the flight trajectories and the ground control point distribution. Altimetric and planimetric residuals were reported and compared for each photogrammetric survey. Using a regular grid of ground targets, the result obtained from Phantom 4 is one order of magnitude better than the ones obtained from the other UASs. Mavic Mini 2 leads to an error average of about 5 cm. Remembering that the Mavic Mini 2 is an ultralight drone (it does not require a pilot’s license), it could significantly reduce costs compared to all the others.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments

2. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry

3. Guidelines on the use of structure‐from‐motion photogrammetry in geomorphic research

4. UAV Surveying for a Complete Mapping and Documentation of Archaeological Findings. The Early Neolithic Site of Portonovo;Malinverni;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2016

5. UAV photogrammetry for mapping and 3D modeling–current status and future perspectives;Nex;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3