Evaluating Machine Learning and Remote Sensing in Monitoring NO2 Emission of Power Plants

Author:

Alnaim AhmedORCID,Sun ZihengORCID,Tong DanielORCID

Abstract

Effective and precise monitoring is a prerequisite to control human emissions and slow disruptive climate change. To obtain the near-real-time status of power plant emissions, we built machine learning models and trained them on satellite observations (Sentinel 5), ground observed data (EPA eGRID), and meteorological observations (MERRA) to directly predict the NO2 emission rate of coal-fired power plants. A novel approach to preprocessing multiple data sources, coupled with multiple neural network models (RNN, LSTM), provided an automated way of predicting the number of emissions (NO2, SO2, CO, and others) produced by a single power plant. There are many challenges on overfitting and generalization to achieve a consistently accurate model simply depending on remote sensing data. This paper addresses the challenges using a combination of techniques, such as data washing, column shifting, feature sensitivity filtering, etc. It presents a groundbreaking case study on remotely monitoring global power plants from space in a cost-wise and timely manner to assist in tackling the worsening global climate.

Funder

NASA ACCESS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers

2. Geostationary Satellite Constellation for Observing Global Air Quality: Geophysical Validation Needshttps://ceos.org/document_management/Publications/Publications-and-Key-Documents/Atmosphere/GEO_AQ_Constellation_Geophysical_Validation_Needs_1.1_2Oct2019.pdf

3. Catalog of NO<sub><i>x</i></sub> emissions from point sources as derived from the divergence of the NO<sub>2</sub> flux for TROPOMI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3