Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm

Author:

Jing Xia,Zou Qin,Yan Jumei,Dong Yingying,Li Bingyu

Abstract

For the problem of multi-dimensional feature redundancy in remote sensing detection of wheat stripe rust using reflectance spectrum and solar-induced chlorophyll fluorescence (SIF), a feature selection and disease index (DI) monitoring model combining mRMR and XGBoost algorithm was proposed in this study. Firstly, characteristic wavelengths selected by successive projections algorithm (SPA) were combined with the vegetation indices, trilateral parameters, and canopy SIF parameters to constitute the initial feature set. Then, the max-relevance and min-redundancy (mRMR) algorithm and correlation coefficient (CC) analysis were used to reduce the dimensionality of the initial feature set, respectively. Features selected by mRMR and CC were input as independent variables into the extreme gradient boosting regression (XGBoost) and gradient boosting regression tree (GBRT) to monitor the severity of stripe rust. The experimental results show that, compared with CC analysis, the monitoring accuracy of the features selected by mRMR in the XGBoost and GBRT models increased by 12% and 17% on average, respectively. Meanwhile, the mRMR-XGBoost model achieved the best monitoring accuracy (R2 = 0.8894, RMSE = 0.1135). The R2 between the measured DI and predicted DI of mRMR-XGBoost was improved by an average of 5%, 12%, and 22% compared with mRMR-GBRT, CC-XGBoost, and CC-GBRT models. These results suggested that XGBoost is more suitable for the remote sensing monitoring of wheat stripe rust, and mRMR has more advantages than the commonly used CC analysis in feature selection. Field survey data validation results also confirm that the mRMR-XGBoost algorithm has excellent monitoring applicability and scalability. The proposed model could provide a reference for data dimensionality reduction and crop disease index monitoring based on hyperspectral data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3