Time Series Chlorophyll-A Concentration Data Analysis: A Novel Forecasting Model for Aquaculture Industry

Author:

Eze EliasORCID,Kirby Sam,Attridge John,Ajmal TahminaORCID

Abstract

Eutrophication in fresh water has become a critical challenge worldwide and chlorophyll-a content is a key water quality parameter that indicates the extent of eutrophication and algae concentration in a body of water. In this paper, a forecasting model for the high accuracy prediction of chlorophyll-a content is proposed to enable aquafarm managers to take remediation actions against the occurrence of toxic algal blooms in the aquaculture industry. The proposed model combines the ensemble empirical mode decomposition (EEMD) technique and a deep learning (DL) long short-term memory (LSTM) neural network (NN). With this hybrid approach, the time-series data are firstly decomposed with the aid of the EEMD algorithm into manifold intrinsic mode functions (IMFs). Secondly, a multi-attribute selection process is employed to select the group of IMFs with strong correlations with the measured real chlorophyll-a dataset and integrate them as inputs for the DL LSTM NN. The model is built on water quality sensor data collected from the Loch Duart salmon aquafarm in Scotland. The performance of the proposed novel hybrid predictive model is validated by comparing the results against the dataset. To measure the overall accuracy of the proposed novel hybrid predictive model, the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) were used.

Publisher

MDPI AG

Reference17 articles.

1. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems;Chislock;Nat. Educ. Knowl.,2013

2. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems

3. Comparison of BOD, COD and TOC as the indicator of organic matter pollution in streams and reservoirs of Korea;Kim;J. Korean Soc. Environ. Eng.,2007

4. Eutrophication in a Chinese Context: Understanding Various Physical and Socio-Economic Aspects

5. Environmental Costs of Freshwater Eutrophication in England and Wales

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3